Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Molecules ; 27(24)2022 Dec 12.
Article in English | MEDLINE | ID: covidwho-2163528

ABSTRACT

Current therapy against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are based on the use of Remdesivir 1, Molnupiravir 2, and the recently identified Nirmatrelvir 3. Unfortunately, these three drugs showed some limitations regarding potency and possible drug-drug interactions. A series of derivatives coming from a decoration approach of the privileged scaffold s-triazines were synthesized and evaluated against SAR-CoV-2. One derivative emerged as the hit of the series for its micromolar antiviral activity and low cytotoxicity. Mode of action and pharmacokinetic in vitro preliminary studies further confirm the role as candidates for a future optimization campaign of the most active derivative identified with this work.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology
2.
Curr Med Chem ; 29(12): 2013-2050, 2022.
Article in English | MEDLINE | ID: covidwho-1968939

ABSTRACT

BACKGROUND: Multicomponent reactions are one-pot processes for the synthesis of highly functionalized hetero-cyclic and hetero-acyclic compounds, often endowed with biological activity. OBJECTIVE: Multicomponent reactions are considered green processes with a high atom economy. In addition, they present advantages compared to the classic synthetic methods, such as high efficiency and low waste production. METHODS: In these reactions, two or more reagents are combined together in the same flask to yield a product containing almost all the atoms of the starting materials. RESULTS: The scope of this review is to present an overview of the application of multicomponent reactions in the synthesis of compounds endowed with antiviral activity. The syntheses are classified depending on the viral target. CONCLUSION: Multicomponent reactions can be applied to all the stages of the drug discovery and development process, making them very useful in the search for new agents active against emerging (viral) pathogens.


Subject(s)
Antiviral Agents , Drug Discovery , Antiviral Agents/pharmacology , Humans
3.
Mol Divers ; 26(6): 3399-3409, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1681346

ABSTRACT

The rise of antimicrobial-resistant phenotypes and the spread of the global pandemic of COVID-19 are worsening the outcomes of hospitalized patients for invasive fungal infections. Among them, candidiases are seriously worrying, especially since the currently available drug armamentarium is extremely limited. We recently reported a new class of macrocyclic amidinoureas bearing a guanidino tail as promising antifungal agents. Herein, we present the design and synthesis of a focused library of seven derivatives of macrocyclic amidinoureas, bearing a second phenyl ring fused with the core. Biological activity evaluation shows an interesting antifungal profile for some compounds, resulting to be active on a large panel of Candida spp. and C. neoformans. PAMPA experiments for representative compounds of the series revealed a low passive diffusion, suggesting a membrane-based mechanism of action or the involvement of active transport systems. Also, compounds were found not toxic at high concentrations, as assessed through MTT assays.


Subject(s)
COVID-19 , Cryptococcus neoformans , Antifungal Agents/pharmacology , Microbial Sensitivity Tests , Candida
4.
Antiviral Res ; 190: 105064, 2021 06.
Article in English | MEDLINE | ID: covidwho-1157118

ABSTRACT

COVID-19 is currently a highly pressing health threat and therapeutic strategies to mitigate the infection impact are urgently needed. Characterization of the SARS-CoV-2 interactome in infected cells may represent a powerful tool to identify cellular proteins hijacked by viruses for their life cycle and develop host-oriented antiviral therapeutics. Here we report the proteomic characterization of host proteins interacting with SARS-CoV-2 Nucleoprotein in infected Vero E6 cells. We identified 24 high-confidence proteins mainly playing a role in RNA metabolism and translation, including RNA helicases and scaffold proteins involved in the formation of stress granules, cytoplasmic aggregates of messenger ribonucleoproteins that accumulate as a result of stress-induced translation arrest. Analysis of stress granules upon SARS-CoV-2 infection showed that these structures are not induced in infected cells, neither eIF2α phosphorylation, an upstream event leading to stress-induced translation inhibition. Notably, we found that G3BP1, a stress granule component that associates with the Nucleoprotein, is required for efficient SARS-CoV-2 replication. Moreover, we showed that the Nucleoprotein-interacting RNA helicase DDX3X colocalizes with viral RNA foci and its inhibition by small molecules or small interfering RNAs significantly reduces viral replication. Altogether, these results indicate that SARS-CoV-2 subverts the stress granule machinery and exploits G3BP1 and DDX3X for its replication cycle, offering groundwork for future development of host-directed therapies.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/metabolism , DEAD-box RNA Helicases/metabolism , Animals , COVID-19/virology , Cell Line , Chlorocebus aethiops , DNA Helicases , Eukaryotic Initiation Factor-2/metabolism , Host-Pathogen Interactions , Humans , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Proteomics/methods , RNA Helicases , RNA Recognition Motif Proteins/metabolism , RNA, Small Interfering/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Vero Cells , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL